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Abstract: Diffeomorphic registration has become an active research field presently in medical image registration
because of its the differential transformation with invertibility between anatomic individuals. In this paper, we
propose a novel method named Locally Adaptive Topology Preservation for Diffeomorphic Registration, which
is able to obtain accurate approximation for the local tangent space on the Lie group manifold and yield more
plausible diffeomorphisms for spatial transformations. In order to incarnate the local geometric structure of the
Lie group, the local linear approximation is adaptively optimized by selecting appropriate neighborhoods for each
sample point. Furthermore, we investigate the Lie group structure of the Symmetric Positive Definite (SPD)
matrices and evaluate the effectiveness of the algorithm by utilizing several sets of brain images. Experimental
results demonstrate that our algorithm has a higher degree of topology preservation on a dense high-dimensional
deformation field and performs better in the noisy setting.

Key–Words: Diffeomorphic registration, Lie group, Neighborhood selection, Symmetric positive definite matrices,
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1 Introduction

In medical image registration, estimating a highly
non-linear deformation corresponding to anatomic
variability between individuals is a challenging re-
search field [1, 2]. A basic assumption of this task
is that two individuals have the same anatomic struc-
tures, and the transformation has smoothness and
topological properties. In nature, topology preserva-
tion is a global constraint to maintain connectivity be-
tween local neighbor anatomic structures. Without
any strict constraint, the continuity and invertibility of
a transformation is not necessarily guaranteed.

There has been a considerable body of previ-
ous research done on preserving topology for non-
rigid image registration. A general approach to im-
plement topology preservation is to impose positivity
constraint on the Jacobian of the transformation.

Musse et al [3] described a spline-based topology
preserving image registration. By utilizing a continu-
ous hierarchical structure, they controlled topological
constraints to enforce Jacobian positivity over the con-
tinuous domain, not only on the discrete grid. How-
ever, it only works on two dimensional deformation
field. Vincent Noblet et al [4] extended the work of

[3] to three dimensional registration. In order to yield
constraints on optimization, they employed the block-
wise descent algorithm. Rohlfing et al [5] penal-
ized deviations of the Jacobian determinant of the de-
formation to obtain a local volume-preservation con-
strain. Christensen et al [6, 7] addressed the frame-
work of elastic solids and viscous fluids, which con-
strained the transformation to be positive definite Ja-
cobian via partial differential equations. Bilge et al
[8] used deformation gradients to approximate the dis-
placement field Jacobian and imposed topology pre-
serving regularity on a irregular deformation field.
Ashburner et al [9] divided the domain into a trian-
gular mesh where Jacobian of the triangle relies on
the rate of change prior potential. Haber et al [10]
introduced discretization on a triangulation to prevent
twists and singular Jacobian. They controlled the de-
terminant of the Jacobian by using inequality con-
straints.

In recent years, a diffeomorphic model has been
developed for medical image registration [11, 12, 13].
A diffeomorphism is a one-to-one mapping between
individuals with smooth and invertible properties,
which can perform the biologically reasonable defor-
mation while avoiding the physically implausible phe-
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nomena. In contrast to non-diffeomorphic registration
in medical images, diffeomorphic methods guaran-
tee a smooth and invertible correspondence over the
whole domain. In [11], Marsland et al represented
diffeomorphic warp as a time varying velocity field,
which is formulated with geodesic interpolating spline
base, and then approximated the diffeomorphism by
using iterative greedy algorithm. In [13], Arsigny et
al proposed the Log-Euclidean framework,in which
Euclidean operations are performed via logarithms,
while having inversion-invariant property. They ef-
ficiently take advantage of stationary vector fileds to
parameterize diffeomorphisms. Vercauteren et al [14]
represented diffeomorphic transformation as a station-
ary velocity field, the space of which can form a
Lie group under composition operation in the Log-
Euclidean framework. Diffeomorphisms should have
been continuous so as to enforce consistency under
compositions of the deformations. However, the com-
posed transformation is computed on discrete grid.
Therefore, the Jacobian is not necessary to be posi-
tive. In [12], Ashburner used diffeomorphic deforma-
tion as a constant time flow of vector fields. Within a
discrete time, large-deformation diffeomorphisms can
be dealt with by a composition of a series of small
deformations.

However, there are two limitations on meth-
ods above. 1) These methods do not consider
the underlying nonlinear structure of data on high-
dimensional diffeomorphisms space. However, the
high-dimensional data contains more structural infor-
mation. 2) They also ignore noise in images. A topol-
ogy preserving displacement field from a noisy obser-
vation does not necessarily preserve topology.

In this paper, we propose a diffeomorphic reg-
istration method, called locally adaptive topology
preservation for diffeomorphic registration in medical
imaging. The proposed method builds on the learn-
ing method presented in [16] and the original diffeo-
morphic demons algorithm [14]. During registration,
we apply symmetric positive definite (SPD) matrices,
which could form a Lie group. In the context of Lie
group, Jacobian matrix at the identity element (Id)
corresponds to the tangent space vector. The tangent
space is constructed from a neighborhood of the iden-
tity element. The neighborhood is closely related to
the curvature. Due to the highly-varying curvature of
the manifold and noise, it is usually difficult to build
a linear approximation of the nonlinear local tangent
space. So far, little work has been done on study-
ing the influence from the size of the neighborhood.
As mentioned in [15], the exponential is a diffeomor-
phism between a neighborhood of the zero in the Lie
algebra and a neighborhood of the identity element in
the Lie group, but it remains obscure what size the

neighborhood is. Therefore, the information of neigh-
borhood needs to be accurately estimated to monitor
deformation fields. In the literatures, there are two
commonly used strategies for selecting the neighbor-
hoods: K-NN [17] and ϵ-N [18].

The contribution of our work is that we make use
of variant neighborhood selections to estimate the lo-
cal tangent space with higher accuracy, and then, we
are able to achieve a higher degree of topology preser-
vation on a dense high-dimensional deformation field.
As a by-product, using PCA in constructing the tan-
gent space processing reduces the noise.

The remainder of the paper is organized as fol-
lows: In section 2, we overview some related knowl-
edge about Lie group and Lie algebra. In section 3
describes how to take advantage of adaptive neighbor-
hood selection to approximate to tangent space, then
to achieve topology preservation. Our proposed algo-
rithm is presented in detail. In section 4, we demon-
strate the experiment results on MR images and eval-
uate our method. Section 5 concludes the work with
discussions.

2 Preliminaries

2.1 Matrix Lie Group And Lie Algebra
We consider a Matrix Lie group as a feature space in
this paper. A Lie group GL(m) is an abstract group
with a differential manifold on which the operations
of group multiplication and inversion are smooth dif-
feomorphisms [19].

Due to the fact that a nonlinear manifold is a topo-
logical space, a Lie group lacks a vector space struc-
ture. A tangent space TεG at a given point on the man-
ifold is a vector space. The tangent space contains all
tangent vectors at this point. Therefore, a common
application in dealing with the nonlinearity is locally
homeomorphic to Euclidean space. It takes advan-
tage of the projection to a tangent space at the point
to approximate the manifold. The tangent space at the
identity element on the Lie group is identified with the
Lie algebra gl(m). Definitions and notation:
◦ GL(m) represents a group of real invertible m×m

matrix

◦ gl(m) represents a linear vector space of m × m
matrices

◦ exp denotes the exponential map

◦ log denotes the logarithm
Between the finite dimensional Lie group and the

Lie algebra, the group exponential maps elements of
Lie algebra to the corresponding elements in the Lie
group. The inverse of the exponential is the logarithm,
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Figure 1: Maps between Lie group and Lie algebra:
The differential mapping of the exponential at the zero
is the Id, the tangent space at the Id is the Lie algebra
of the group

it maps elements in the Lie group to elements of the
Lie algebra, see Fig.1.

Si = exp(si), si = log(Si), (1)

where Si ∈ GL(m), si ∈ gl(m) are elements of Lie
group and Lie algebra. Since the differential of exp is
nowhere singular [20], exp and its inverse log are both
diffeomorphisms. The differential of exp at the zero
has invertibility derived from continuity in a neighbor-
hood of the zero due to the identity element.

If a Lie group is a matrix group, it corresponds to
the algebraic matrix exponential and the matrix loga-
rithm. The identity element is the identity matrix. The
exponential and logarithm in matrix sense are given
by

exp(si) =
∞∑
k=0

1

i!
ski ,

log(Si) =

∞∑
k=1

(−1)k−1

k
(Si − I)k.

(2)

2.2 SPD Matrices On Lie Group

SPD matrices are a type of important nonlinear man-
ifolds containing more structural information for the
image registration. There are varied forms of SPD
matrices, for instance, covariance region descriptors
[21] and structure tensors [22].

We denote Sym+(m) as the space of SPD m×m
matrices. For any SPD matrix, there exists a symmet-
ric logarithm. Let Si, Sj ∈ Sym+(m), the logarith-
mic product is defined as

Si ⊙ Sj := exp(log(Si) + log(Sj)), (3)

where exp(.) and log(.) denote the matrix exponential
and logarithm operators, respectively.

The group inverse of an SPD matrix is given by

log(S−1
j ) := −log(Sj),

Si ⊙ S−1
j := exp(log(Si)− log(Sj)).

(4)

The logarithmic multiplication ⊙ on Sym+(m) is
compatible with its structure of smooth manifold.
(Si, Sj) 7→ Si ⊙ S−1

j is C∞ [20]. Therefore, un-
der logarithmic multiplication ⊙, SPD matrices is a
Lie group structure. Sym+(m) is diffeomorphic to
its tangent space at the identity element. SPD matrices
is mapped to the tangent space at the identity matrix.
The tangent space at the identity element is identified
with the Lie algebra gl(m).

3 Methodology

3.1 Topology Preservation On Diffeomor-
phic Demons

Naturally, image registration finds an optimal spatial
transformation that maps each point in the floating im-
age to a point in the reference image, topology preser-
vation ensures that each point in the floating image has
one and only one corresponding point in the reference
image so that the deformation field is diffeomorphic,
otherwise, the topology is not necessarily preserved.

Our registration algorithm is built on Diffeo-
morphic Demons method in which transformations
are assumed to belong to a group of diffeomor-
phisms. Given a reference image Ir and a floating
image If , let S be a data set [S1, S2, · · · , Sn] ⊂
Ir, Si ∈ Sym+(m). For each point Si, there is a
k-nearest neighbourhood Ei = [Si1 , Si2 , · · · , Sik ],
Sij ∈ Sym+(m). Diffeomorphic Demons registra-
tion is formulated as minimizing a cost function which
contains a similarity term and a regularization term,
and enforces a Jacobian to add an additional regular-
ization as a constraint. The cost function is given by

minE(u) = Sim(Ir, If ◦ φ) +Reg(φ), (5)

where Sim(.) and Reg(.) denote a similarity
term and a regularization term, respectively. Dif-
feomorphic formulation is based on velocity flow
ϕ(Si, t), t ∈ [0, 1]. Eq.(5) seeks an optimal trans-
formation φ(Si) = ϕ(Si, t), u is a time-dependent
velocity field u(ϕ(Si, t), t), ϕ can be obtained by the
ordinary differential equation with respect to u,

dϕ(Si, t)

dt
= u(ϕ(Si, t), t), ϕ(Si, 0) = Si. (6)
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For any Sij , there exists u ∈ gl(m) so that the group
transformation φ ∈ GL(m) can be obtained by finite
composition of the group exponential map exp(u) at
time t = 1, ϕ(Si, 1) = exp(u(si)). The diffeomor-
phic transformations are represented as the composi-
tion of

Sij = Si ◦ ϕ = Si ◦ exp(u). (7)

In order to establish diffeomorphism between the
neighborhood of zero in the Lie algebra and the neigh-
borhood of the identity element in the Lie group with
exp(u(0)) = Id, the exponential map is restricted to
a neighbourhood of the origin in the Lie algebra so
that this correspondence is unique. As a result, the
topology is preserved between Lie groups.

Furthermore, the Taylor expansion of φ takes the
form,

φ(Si ◦ exp(u)) = φ(Si) + Jφ
Si
.u+O(∥ u ∥2). (8)

Jacobian matrix describes the derivatives of the defor-
mations, it can be represented as follows,

[Jφ
Si
]i =

∂

∂ui
φ(Si ◦ exp(u)). (9)

Let T = [τ1, τ2, · · · , τd] ∈ TεG be the orthonormal
basis matrix in the identity tangent space of the Lie
group, τi ∈ Rm. A tangent vector field (deformation
field) u with respect to a local coordinate chart around
a point Si can be denoted by

u =
d∑

i=1

uiτi, (10)

where ui is the component of u in a given coordinate
system. Combining Eq.(9) and (10), we may re-write
the Jacobian matrices as follows,

[Jφ
Si
]i =

∂

∂ui
φ(Si ◦ exp(

d∑
i=1

uiτi)). (11)

Jacobian matrices encode the local transformation of
the deformation field, the determinant of the Jacobian
is used as a strict and strong constraint for minimizing
the cost function, see Eq.(5). The topology preserva-
tion on a deformation field is associated with a posi-
tive Jacobian [23]. Eq.(11) should satisfy [Jφ

Si
]i > 0

at any point at every iteration. Negative determinants
indicate that the invertibility on the space of diffeo-
morphisms fails. As shown in Eq.(11), Jacobian of
the deformation at arbitrary point Si is computed by
the orthonormal basis matrix Ti of the tangent space
at the identity element, the tangent space is influenced
by the neighborhood of the identity element. There-
fore, selecting the neighbors of the identity element

Figure 2: A flowchart of the proposed registration
model using adaptive neighborhood selection method

is necessary to estimate an accurate approximation
of the local tangent space, and finally find an accu-
rate orthonormal basis matrix. However, due to varied
curvature of the nonlinear manifold, the set of points
in the neighbor is not accurately close to the tangent
space. According to [24], smaller curvature near the
identity element should give rise to a larger neighbor-
hood, while larger curvature should tend to shrink the
neighborhood, as a consequence, the neighborhood is
closely related to the structure of data.

3.2 Locally Adaptive Tangent Space Ap-
proximation

A Lie group is a manifold. Motivated by the idea
of adaptive manifold learning [16], we introduce ap-
proximation to the tangent space at the Id based on
adaptive selection of the neighborhood sizes. For
simplicity, the Id is referred to as ε in the follow-
ing sections. Let Eε be a neighborhood of the Id, it
consists of k nearest neighbors [ε1, ε2, · · · , εk], εj ∈
Sym+(m), j = 1, 2, · · · , k. An optimal linear fitting
to the Id in the neighborhood can be established as

k∑
j=1

∥εj − (ε̄+ Tθj∥ = ∥Eε − (ε̄eT + TΘ∥, (12)

where θj is the projection of εj in a local neighbor-
hood on the local PCA, Eε is the matrix of εjs. T rep-
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resents an orthonormal basis matrix of tangent space,
ε̄ is the mean of all εj

θj = TT(εj − ε̄) j = 1...k. (13)

Θ ∈ Rd×k is the matrix made of θj , also is the
local coordinate corresponding to the basis T ,

Θ = [θ1, θ2, · · · , θk] = TT(Eε − ε̄eT). (14)

By using singular value decomposition (SVD) to Eε−
ε̄eT, we obtain σ1 ≥ · · · ≥ σd ≥ · · ·σk, the solution
of Eq.(14) is

Θ = diag(σ1, σ2, · · · , σd)V T, (15)

where V T represents a matrix consisting of d right
singular vectors of Eε−ε̄eT corresponding to d largest
singular values, and we get T ∈ Rm×d, which is the
matrix formed by left singular vectors, we have

∥Θ∥ =
√∑

j≤d

(σj)2, (16)

∥Eε − (ε̄eT + TΘ∥ =
√∑

j>d

(σj)2. (17)

According to Eq.(16) and (17), a ratio r is formed as
follows,

r =

√∑
j≤d

(σj)2/
∑
j>d

(σj)2. (18)

This ratio is a criterion to adaptively select neighbor-
hood.

3.3 Proposed Algorithm

A flowchart of the proposed registration model can be
seen in Fig.2. Further details of the algorithm are de-
scribed in Alg.1.

4 Experiments

We evaluate our algorithm by comparing it with the
original Diffeomorphic Demons. For convenience,
Diff Demons is short for Diffeomorphic Demons in
the following sections.

4.1 Construcing SPD Matrices

In this section, we introduce how to construct the SPD
matrices. Constructing the m × m SPD matrix im-
age feature in each pixel position is a crucial step to
our algorithm. First, we extract the 128-dimensional

Algorithm 1 Locally Adaptive Topology Preservation
for Diffeomorphic Registration in Medical Imaging
Input: Ir (Reference image) and If (Floating im-

age)
Output: Registered image
1: Convert Ir and If to SPD matrices;
2: Choose a minimum kmim, a maximum kmaz and

an initial size of neighborhood k for Id;
3: Calculate σj of Eε − ε̄eT using SVD;
4: Calculate the ratio r;
5: if r < η (a hypothetical threshold) then
6: Eε ←− E

(k)
ε

7: go to line 30
8: else
9: if k > kmin then

10: delete the last column of E(k)
ε

11: E
(k)
ε ←− E

(k−1)
ε

12: k ←− k − 1
13: return to line 3
14: end if
15: for k = kmin, · · · , kmax do
16: Find k corresponding to the minimum r(k)

17: Eε ←− E
(k)
ε

18: end for
19: Compute ε̄+ TΘj to Eε

20: for j = k + 1, · · · , kmax do
21: Compute θj = TT(ε− ε̄) for all εj out of Eε

22: if ∥εj − ε̄− Tθj∥ ≤ η∥θj∥ then
23: Add εj to Eε

24: E
(k)
ε ←− E

(k+1)
ε

25: k ←− k + 1
26: end if
27: end for
28: end if
29: Compute the orthonormal basis T =

[τ1, τ2, · · · , τd] in the identity tangent space
TεG

30: Compute the Jacobian at an arbitrary point
31: Minimize the cost function

dense-SIFT descriptors,pixel locations(x, y), the in-
tensity I(x, y), the norm of the first derivatives of the
intensities with respect to x and y. Each pixel of the
image is converted to a 133-dimensional feature vec-
tor fi, it is represented as follows,

fi = [SIFT x y I(x, y) |∂(x, y)
∂x

| |∂(x, y)
∂y

|]T.

(19)

WSEAS TRANSACTIONS on SIGNAL PROCESSING
Wei Liu, Lei-Ting Chen, Yun-Jin Chen, 

Guo-Cheng Yang, Hong-Bin Cai

E-ISSN: 2224-3488 32 Volume 12, 2016



Second, according to [25], we compute the outer prod-
ucts of local descriptors fi and its transpose fT

i , get a
SPD matrix Si

Si = fi.f
T
i , (20)

where the size of Si ∈ Sym+(m) is 133× 133,m =
133. Finally, we construct a graph with a node for
each point on the Lie group manifold, and with edges
connecting neighboring nodes. Therefore, the neigh-
borhood can be defined with an adaptive neighbor-
hood around each point. Here each point is a SPD
matrix. In order to reduce the influence of noise
and the computation complexity, we transform a high-
dimensional Lie group into a dimension-reduced one
with [26] method. The dimension of Si ∈ Sym+(m)
is selected in the set m = {133, 123, 113}

4.2 Evaluation Criterion

To evaluate registration performance, we consider
two criterions: error (%) and the degree of topology
preservation dTP . A topology preservation deforma-
tion field must satisfy that the Jacobian determinant
is positive at any point. In order to evaluate clinical
results, we use the root mean squared (RMS) error.
In practice, the Jacobian is computed by finite differ-
ence on the discrete grid in stead of continuous spatial
transformations, discretization leads up to the fact that
Jacobians is not always positive. Therefore we use
dTP to describe the degree of topology preservation.

dTP =
n

N
, (21)

where n and N denote the total number of points in
GL(m) and the number of points whose Jacobian are
positive, respectively.

4.3 Comparison Results And Analysis

In this section, simulation results are performed on
shape C, synthetic and clinical data.

4.3.1 Square To Shape C

Fig.3 illustrate the comparison results on transforma-
tions of a square and a shape C, as shown in (a) and
(e). In this experiment, three transformations are gen-
erated for different size of neighborhood k and differ-
ent dimension m. In the case of (b) and (f), there exist
folding and overlapping. In the case of (c) and (g), it
indicates smoother deformation field than (b) and (d),
but it is not exact enough in contrast to (d). Smooth-
ness between two transformations need not be topol-
ogy preserving, especially in medical image analysis,
for example, some lesion in tissue often happens [8].

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3: C experiment: (a) floating image.(e) refer-
ence image. (b) deformed result with k = 180,m =
133. (c) deformed result with k = 110,m = 123.
(d) deformed result with k = 140,m = 113. (f)-(h)
deformed fields corresponding to (b)-(d)

4.3.2 Synthetic Data

Figure 4: Synthetic experiments without noise. From
top to bottom, the rows correspond to reference slices
49, 61 and 86, respectively. From left to right, the
first column shows the floating (deformable)images;
the second column shows the registration result after
the Diff demons; the third column shows the regis-
tration result after the proposed; the fourth column
shows the deformation grids after the proposed; the
fifth column shows the reference images

We conduct synthetic experiments on 2-D T1-
weighted MR images(217 × 181 pixels each image)
from the BrainWeb database. Three pairs of slices are
selected randomly from the 2-D T1-weighted mode
sequences in the database, each pair consists of a ref-
erence slice from normal brain database and a floating
slice which come from MS lesions database. They are
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Table 1: Error (%)) On The Brainweb Database Without Noise

Table 2: Error (%)) On The Brainweb Database With Noise

Figure 5: Synthetic experiments with noise. From top
to bottom, the rows correspond to reference slices 49,
61 and 86, respectively. From left to right, the first
column shows the floating (deformable) images; the
second column shows the registration result after the
Diff demons; the third column shows the registration
result after the proposed; the fourth column shows the
deformation grids after the proposed; the fifth column
shows the reference images

further separated into two groups, one with 3% noises,
the other without noises.

Table I and Table II show errors on the BrainWeb
database without noise and with noise, respectively.
We randomly select reference slices 49, 61 and 86
from the normal brain database as reference images
and the correspondent floating slices 52, 59 and 88
from MS lesion brain database. For the noiseless set-
ting, the choice of neiborghood is empirically from
kmin = 100 to kmax = 200. As shown in Table I, the
proposed adaptive method for SPD matrices on Lie
group achieves superior performances in most tests.
Though possibly a larger error in some tests, there
must exist at least one item, for which the proposed
could obtain a lower error. In the case of slice 49, the
error on 123-dimension with k = 130 is 6.34%, which
is much lower than the result 10.12 with k = 190,
and lower than 6.49% of the Diff Demons, while in
the case of slices 61 and 86, we obtain the best re-
sults of 6.44% for m = 123, k = 180 and 6.33% for
m = 113, k = 120, respectively. It indicates that a
larger neighborhood is needed for slice 61 to approx-
imation to the local tangent space than slices 49 and
86.

In Table II, we add 3% noise to achieve more re-
alistic results, our algorithm needs a relatively larger
neighborhood to identify the local tangent space, pa-
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rameter k ranges from 200 to 300. Compared with the
Diff Demons method, our method in the noisy setting
demonstrates more remarkable advantage than that in
the noiseless setting. Without noise, the new method
yields lower error than control in 6 of the cases. The
number increases to 14 when noise presents, the main
reason is that adaptive selection of neighborhood us-
ing PCA can reduce the noise [27]. We preserve 95%
of data energy in PCA processing.

In Fig.4 and Fig.5, from top to bottom, the first
row corresponds to slice 49 with m = 123 and k =
130 or m = 123 and k = 230, the second row cor-
responds to slice 61 with m = 123 and k = 180 or
m = 123 and k = 280; the third row corresponds to
slice 86 with m = 113 and k = 120 or m = 113 and
k = 220. From left to right, the first column shows
the floating(deformable)images; the second column
shows the registration result after the Diff demons
method, the third column shows the registration result
after the proposed adaptive method; the fourth col-
umn shows smooth deformation grids, the proposed
adaptive produce topology preservation without any
overlap and tear, the fifth column shows the reference
images. One can clearly observe that more similarity
exists between the third column (the result after the
proposed) and the fifth column (the reference images)
than that between the second column (the result after
the Diff Demons) and the fifth column.

In Fig.6, slice 49 with and without noise are sam-
pled for comparison of the degree of topology preser-
vation dTP . More iterations are required for the pro-
posed algorithm to converge to the final solution, but
higher degree is obtained. Our algorithm is sensitive
to the size of neighborhood, as well as the varied di-
mension. Comparison of noiseless results are depicted
in (a), (c) and (e), respectively. According to the data
in Table I, we set parameter k = {120, 130, 140}.
The dTP reported in Diff Demons is 90%, two results
in our approach exceed 90%, the best one achieves
91.2% with k = 130 and m = 123 shown in (c), an-
other one is 90.6% with k = 120 and m = 133 shown
in (e). (b), (d) and (f) describe comparison of noisy
results, here k = {230, 240, 250}, The dTP with Diff
Demos is 84%. In our proposed approach, three re-
sults exceed 84%, the maximal value of dTP is 86%.

4.3.3 Clinical Data

As shown in Fig.7 and 8, clinical data consist of four
groups: the gray matter without and with noise, the
white matter without and with noise. In the gray
matter data without and with noise, the best perfor-
mance appear when m = 113, k = 120 and m =
113, k = 240, respectively. In the white matter data
without and with noise,the best results are reported

with m = 123, k = 160 and m = 123, k = 270.

Fig.9 indicates comparison of the convergence on
Diff Demons and the proposed. Due to the mapping
between high dimension tangent space and the Lie
group, the proposed method needs more iterations to
reach convergence. However, as shown in Fig.9 (a)-
(d), the proposed algorithm produces convergence till
the 60th iteration, RMS errors in noiseless setting (a)
and (b) are not higher than the result of Diff Demons
from the 60th iteration and begin to converge, RMS
errors in noisy setting (c) and (d) become lower than
the result of Diff Demons from the 60th iteration and
begin to converge.

5 Conclusions And Future Work

In this paper, we present a novel approach for
topology-preserving deformable registration in med-
ical images. Our work is devoted to enforce topol-
ogy preservation by using adaptive neighborhood se-
lection to approximate tangent space. We consider
the structure of data and the influence of noise which
are ignored in the previous methods. The proposed
method adopts the Lie group structure of symmetric
positive definite matrices with dense and high dimen-
sional features. Furthermore, our results show the
sensitivity of our proposed algorithm to the different
dimension and neighborhood size of the transformed
SPD. Compared with the original method, experiment
results indicate a higher accuracy, particularly, these
results in the presence of noisy.

In future, we will focus on two problems. First,
due to iteratively mapping to the high dimensional
tangent spaces, the algorithm power is obtained at the
expense of computational efficiency; second, though
there always exists a configuration from the size of
neighborhood and the size of dimension reaching ex-
pected performance, it is still not theoretically clear
how to select the configuration following some certain
rule. If we can find the rule so as to ensure configu-
rations from the possible set without enumeration, the
amount of work in experiments can be reduced. How-
ever, determining the intrinsic dimensionality of data
is a difficult issue. We will address these problems in
the future work.
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(a) m=113 without noise
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(b) m=123 without noise
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(c) m=133 without noise
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(d) m=113 with noise
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(e) m=123 with noise
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(f) m=133 with noise

Figure 6: Comparison of the degree of topology preservation: (a)(c)(e) in the noiseless setting; (b)(d)(f) in the
noisy setting

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Clinical data without noise. The first row shows grey matter images, the second row shows white matter
images. (a)(e) reference images; (b)(f) floating images; (c)(g) the results after 30 iterations; (d)(h) the results after
60 iterations
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Clinical data with noise. The first row shows grey matter images, the second row shows white matter
images. (a)(e) reference images; (b)(f) floating images; (c)(g) the results after 30 iterations; (d)(h) the results after
60 iterations
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Figure 9: Comparison of RMS error on clinical data
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